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LETTER TO THE EDITOR 

On the Temperley-Nagle identity for graph embeddings 

F Y Wu 
Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA 

Received 30 June 1978, in final form 1 1  August 1978 

Abstract. A simple derivation of the Temperley-Nagle identity for graph embeddings is 
given. It is shown that the identity leads to a sum-rule relation connecting the lattice 
constants of strong and weak embeddings. It is also shown that the identity yields the 
fluctuation of the number of bonds (sites) in a site (bond) percolation. 

The theory of graph embeddings plays an important role in the study of cooperative 
phenomena and related problems (Domb 1960,1974). Two types of graph embeddings 
and, consequently, two types of lattice constants arise in these considerations. These 
are the lattice constants associated with the strong (low-temperature) embeddings and 
those with the weak (high-temperature) embeddings. It has been shown by Sykes et a1 
(1966) that the two sets of lattice constants are related by a relationship which is most 
easily derived from a geometric consideration. To our knowledge, this result has 
remained to this date the only explicit relation which connects these two sets of lattice 
constants. 

Some ten years ago Nagle (1968) obtained a weak-graph expansion for the 
low-temperature king problem to arrive at an identity which has also been described 
earlier by Temperley (1959). One interesting consequence of this expansion, which was 
not made explicit in Nagle (1968), is a sum-rule relation connecting the weak and strong 
lattice constants. Another implication of this Temperley-Nagle (TN) identity is that it 
yields the fluctuation of the number of bonds (sites) in a site (bond) percolation. We 
describe these results in this Letter. We also give an alternate but more elegant 
derivation of the TN relation. 

Consider an arbitrary graph G of N vertices (sites) and E lines (edges) which in the 
case of physical applications will be a lattice. Let G+ E G be a section graph of G of U 
vertices and 1 lines, and L a line set of G containing 1 lines which cover U vertices. (A 
vertex is considered covered if its degree is at least one.) The TN identity now reads 

where the summation on the left-hand (right-hand) side of (1) extends over all section 
graphs (line sets) of G. To facilitate discussions we first discuss the implications of (1). 
A simple derivation of this identity will be given at the end of the Letter. 

The left-hand side of (1) generates precisely the strong embeddings of all section 
graphs of G. The right-hand side of (l), which extends over the line sets L, generates the 
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weak embeddings of the subgraphs of G that contain no isolated sites. Thus, if we define 

[v ,  I; G ]  = the number of strong embeddings in G of all section graphs G+ 5 G of v 

( U ,  I ;  G )  = the number of weak embeddings in G of all subgraphs G' E G of v vertices 

and adopt the convention that ( U ,  I ;  G ) =  0 whenever the subgraph G' contains isolated 
sites, then ( 1 )  can be rewritten as 

vertices and 1 lines, 

and 1 lines. 

By expanding the right-hand side and equating the coefficients of x'y' ,  we obtain the 
identity 

where 

Similarly we obtain the inverse relation 

The expressions ( 3 )  and (4) relate the sums of strong and weak lattice constants of fixed 
numbers of vertices and lines. Therefore they are in fact sum rules for the constants of 
individual graphs. Note that these relations do not distinguish between connected and 
disconnected constants. Also they are valid for general N and easy to write down, for its 
coefficients are simple combinatorial factors that require no geometric considerations. 
The correctness of ( 3 )  and (4) for specific values of B and T can be readily verified. For 
example, for B = 3 and T =  1 one obtains the identity 

[ 3 , 1 ;  G ] = 3 ( 3 , 3 ;  G ) - 2 ( 3 , 2 ;  G ) + ( N - 2 ) ( 2 , 1 ;  G) .  

Thus, using the following weak lattice constants: 

( 3 , 3 ;  G ) =  0 ,2N,  8N 

( 3 , 2 ;  G )  = 6N, lSN, 66N 

( 2 , l ;  G )  = 2N, 3N, 6 N  

respectively for a periodic square, triangular, or FCC lattice of N sites, we generate the 
respective strong lattice constants 

[ 3 , 1 ;  G ] = 2 N ( N - 8 ) ,  3N(N-10) ,  6 N ( N - 2 0 ) .  

For N = 1 ,  these expressions yield the numbers listed in Domb (1960). 
As another implication of the identity ( 1 )  we observe that by taking x = p / ( l  - p )  and 

y = 1 the left-hand side of ( 1 )  generates a site percolation process on G in which each 
site has a probability p to be occupied and a probability 1 - p  to be empty. Similarly, by 
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taking y - 1 = p/(l - p )  and x = 00 the right-hand side of (1) generates a bond percola- 
tion process on G. This observation permits the explicit evaluation of the mean values of 
the global moments (v"l") for both the site and bond percolations. For example, it is 
clear that the average number of occupied bonds in a site percolation is 

( 0 s  = EP2 ( 5 )  

(v)tY = N I -  (1 -PYI (6 1 
and the average number of occupied sites in a bond percolation is 

where z is the coordination number of the lattice. The identity (1) permits the further 
evaluation of the fluctuations from the mean. For example, the quantity 

is most conveniently evaluated by taking the derivatives on the right-hand side of (1) at 
y = 1. It is then straightforward to deduce the following expressions for the fluctua- 
tions: 

( I 2 ) ,  - (1): = N [ p 2  + 2(2 - lip3 - (22 - l)p4] (7) 

(v2)b- (v) :  = E[(1 -p)'p(l -p>"-'] .  (8) 

Finally we give a simple derivation of the TN identity (1). Nagle (1968) arrived at (1) 
by applying the weak-graph expansion method to the king low-temperature expansion. 
A simpler and more elegant derivation is to consider the following process on G: 

(i) each vertex of G is either occupied, e.g. covered by an atom, or empty; 
(ii) each line of G is either occupied, e.g. covered by a bond, or empty; and 
(iii) a line can be occupied only when the two vertices it connects are occupied. 

If a vertex is occupied, it carries a weight x, and each occupied line carries a weight U. 
The generating function for the process (i)-(iii) is then 

Z ( x , u ) = ~ ~ ' x U u I  
V L  

(9) 

where the summations extend overall occupational configurations V and L of the 
vertex and line sets of G. The prime denotes the imposition of the restriction (iii), and v 
and 1 are the numbers of the occupied vertices and lines. 

Next we carry out the summations in (9) in two different orders. First, we sum over 
all allowed line occupations for a given vertex occupation. Now the vertex occupations 
are most conveniently designated by the section graphs G+ c G whose vertex set 
contains precisely the occupied sites. Also, according to (iii), each line in G' can be 
either occupied or empty. We therefore arrive at 

q x ,  U )  = c XU(1+ U)' (10) 
G +  

where U and I are the numbers of vertices and lines in G+.  Similarly, we may sum over 
all allowed vertex occupations for a given line occupation in (9). The line occupations 
are most conveniently designated by the line set L of the occupied edges. Also 
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according to (iii) each isolated site can be either occupied or empty, we then obtain 

Z(x, u ) = C  U'X"(1 +X)N-u 
L 

where U and 1 are the numbers of covered vertices and lines in L. The identity (1) now 
follows from (10) and (11) upon putting y = 1 +U. 

I wish to thank Professor Ph Choquard for the hospitality kindly extended to me at 
Laboratoire de Physique ThCorique, Ecole Polytechnique FCdCrale de Lausanne, 
where this work was completed. I am also indebted to the referee for calling my 
attention to the reference of Nagle and for constructive suggestions. This work was 
supported in part by NSF Grant No. DMR 76-20643. 
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